logo université de Strasbourg logo CNRS logo INSA Strasbourg logo ENGEES

MATISEN team: Materials for information technology, sensing and energy conversion.

« Materials and concepts for inorganic photovoltaics » : différence entre les versions

De MATISEN team: Materials for information technology, sensing and energy conversion.
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Balise : Cible de la redirection modifiée
 
(5 versions intermédiaires par un autre utilisateur non affichées)
Ligne 1 : Ligne 1 :
#REDIRECT [[Materials engineering for electronics]]

[[fr:Matériaux et concepts pour le photovoltaïque inorganique]]
[[fr:Matériaux et concepts pour le photovoltaïque inorganique]]
[[en:Materials and concepts for inorganic photovoltaics]]


*<u>'''Bulk Si solar cells'''</u>
*<u>'''Bulk Si solar cells'''</u>
[[File:solsim.jpg|thumb|left]]

The photovoltaic industry will use for a very long time crystalline silicon wafers but their growth method (metallurgic Si, ribbon Si) and their impurity content (O, C, Al, Fe, Ti, B, P…) necessitate a very strong decrease of their thickness (<100 µm) in order to minimise the impact of the minority carrier diffusion length.
The photovoltaic industry will continue using for a very long time crystalline silicon wafers but their growth method (metallurgic Si, ribbon Si) and their impurity content (O, C, Al, Fe, Ti, B, P…) necessitate a very strong decrease of their thickness (<100 µm) in order to minimise the impact of the minority carrier diffusion length.
The gettering, surface passivation, texturing, and metallisation steps become very important. Besides, the development of N type Si for photovoltaics is becoming a good alternative. Our research efforts will be based on developing innovative processes for surface passivation (Al2O3 dielectrics, AlN ...), for texturing (reactive plasma), doping and local metallisation (implantation, laser, lamps). The electric properties of metallurgic Si wafers and Si ribbon will be correlated with the impurity conents in these wafers before and after treatment. <br>
The gettering, surface passivation, texturing, and metallisation steps become very important. Besides, the development of N type Si for photovoltaics is becoming a good alternative. Our research efforts will be based on developing innovative processes for surface passivation (Al2O3 dielectrics, AlN ...), for texturing (reactive plasma), doping and local metallisation (implantation, laser, lamps). The electric properties of metallurgic Si wafers and Si ribbon will be correlated with the impurity contents in these wafers before and after treatment. <br>
''Ongoing projects: ANR-BIFASOL ; AMI-DEMOS, EUROGIA-LAPSIS''<br>
''Ongoing projects: ANR-BIFASOL ; AMI-DEMOS, EUROGIA-LAPSIS''<br>
''Academic collaborations: INES-Chambery, INL-Lyon, ILV-Versailles, IUMN-Lille … ''<br>
''Academic collaborations: INES-Chambery, INL-Lyon, ILV-Versailles, IUMN-Lille … ''<br>
Ligne 19 : Ligne 20 :
''Collaborations with industry : PHOTOWATT, SUNTECH, IREPA-Laser, EXCICO … ''
''Collaborations with industry : PHOTOWATT, SUNTECH, IREPA-Laser, EXCICO … ''


*<u>'''Nouveaux concepts pour le photovoltaïque'''</u>
*<u>'''New concepts for photovoltaics'''</u>


<u>Conversion photonique par luminescence</u><br>
<u>Photon conversion by luminescence</u><br>
[[File:sputtering.jpg|thumb|right]]
L’augmentation du rendement de conversion passe par une exploitation totale du spectre solaire par la cellule de conversion. Parmi les différentes solutions, on peut citer les cellules à impuretés ou à bande intermédiaire, pour lesquelles une modification de la partie active de la cellule est nécessaire. Une autre idée originale consiste à modifier le spectre incident par conversion énergétique de ses photons, suivant deux manières : down-conversion ou DC et up-conversion ou UC. Dans le premier cas il s'agit de récupérer les photons par thermalisation et dans le deuxième les photons non absorbés.
Increasing the conversion efficiency requires the complete use of the solar spectrum by the conversion layer. One of the possible solutions is impurity cells or intermediate band cells, in which a modification of the active part of the cell is necessary. Another original idea consists in the modification of the incident spectrum by energy conversion of its photons, either by down-conversion (DC) or up-conversion (UC). In the first case thermalised photons are recovered and in the second case the non absorbed photons are recovered.
Nos investigations sont :<br>
Our investigations are:<br>
:o Développement de couches à conversion à base d’oxynitrures de silicium contenant des nanocristaux de silicium dopés avec des ions de terres rares. <br>
:o Development of conversion films based on silicon oxynitride containing silicon nanocristals doped with rare earth elements.<br>
:o Développement de couches conductrices transparentes (TCOs) à base de ZnO dopées avec un ou plusieurs ions de terres rares (Tb, Yb, Nd…) afin d’obtenir les propriétés de conversion recherchées. Il est également prévu des études de transfert de charges entre les couches ZnO et les nanoparticules de silicium.<br>
:o Development of transparent conductive oxide films (TCOs) based on ZnO doped with one or several rare earth elements (Tb, Yb, Nd…) in order to allow the required conversion properties. Studying the charge transfers between ZnO films and silicon nanoparticles is also planned.<br>
''Collaborations académiques: IPCMS-Strasbourg, IJL-Nancy, METU-Turquie…''
''Academic collaborations: IPCMS-Strasbourg, IJL-Nancy, METU-Turquie…''


<u>Structures à effet plasmonique</u><br>
<u>Plasmonics structures</u><br>
The use of plasmonics in photovoltaics is very recent and relies on the possibility that metallic nanoparticles dispersed on a surface or at the rear can enhance the electromagnetic field and thus increase the absorption in thin films, in particular for silicon. We use either a chemical method (deposition of Ag and annealing) or a physical method (ionic implantation of Ag or Al in a dielectric matrix). The bottlenecks are the control of size and density, the demonstration of efficient conversion and the integration of the process in the final cell (bulk Si or thin film).<br>
L’application de la plasmonique dans le photovoltaïque est très récente et repose sur la potentialité de nanoparticules métalliques dispersées en surface ou en face arrière à exalter le champ électromagnétique et ainsi à augmenter l’absorption dans des couches minces, en particulier pour le silicium. Nous développons cette thématique en utilisant soit une méthode chimique (dépôt d’Ag puis recuit) soit une méthode physique (implantation ionique d’Ag ou Al dans une matrice diélectrique). Les verrous à lever portent sur la maîtrise des tailles et densité, la démonstration de l’efficacité de conversion et enfin l’intégration du procédé dans la cellule finale (en Si massif ou en couche mince). <br>
''Collaborations académiques: IJL-Nancy, IPCMS-Strasbourg, UTT- Troyes''
''Academic collaborations: IJL-Nancy, IPCMS-Strasbourg, UTT- Troyes''


<u>Structures Tandem en silicium</u><br>
<u>Silicon tandem structures</u><br>
The bandgap of crystalline silicon can be tuned by nanostructuring. The objective is to obtain silicon tandem cells by putting side by side Si materials with different nanoparticle sizes or nanowires.<br>
La bande interdite du silicium cristallin peut être modulée par sa nanostructuration. Notre objectif est la réalisation de des cellules tandem à base de silicium en juxtaposant des matériaux Si avec différentes tailles de nanoparticules ou des nanofils. <br>
Our research is two-fold:<br>
Nos recherches s’orientent vers deux voies :<br>
:o Des structures contenant des nanoparticules de silicium dispersées d’une façon ordonnée dans une matrice diélectrique, et dont la bande interdite effective est contrôlée par la taille des nano-objets. Les défis scientifiques sont le contrôle du dopage de ces nanostructures (réalisé dans notre cas soit in-situ lors du dépôt par pulvérisation magnétron soit ex-situ par implantation ionique et recuit thermique ou laser) et la mesure de ses conséquences sur les aspects optiques et électroniques. Le défi technologique majeur est la fabrication d’une cellule sur ces structures.<br>
:o Structure containing silicon nanoparticles dispersed in order in a dielectric matrix, which effective bandgap is controlled by the size of nano-objects. The scientific challenges are the control of doping in these nanostructures (either in-situ during the magnetron sputtering deposition or ex-situ by ionic implantation and thermal or laser annealing) and the measurement of the consequences on the optical and electronic properties. The major technological challenge is the fabrication of a cell on these structures.<br>
:o Silicon nanowire structures by CVD deposition of multilayers containing nanoparticles but in conditions enabling the percolation of these nanoparticles. Our future work will be base on the elaboration of Si nanowires by etching of dielectric matrixes, the doping of these nanowires, the determination of the optical properties of these vertical structures and eventually the realisation of cells.<br>
:o Des structures à nanofils de silicium obtenues par dépôt CVD de multicouches contenant des nanoparticules mais dans des conditions qui permettent la percolation de ces nanoparticules. Nos futurs travaux s’articuleront autour de l’élaboration de nanofils Si résultant du décapage de la matrice diélectriques, le dopage de ces nanofils, la détermination des propriétés optiques de ces structures verticales, et enfin la réalisation des cellules.<br>
''Collaborations académiques: IJL-Nancy, LMPO-Metz''
''Academic collaborations: IJL-Nancy, LMPO-Metz''


<u>Structures Tandem III-V sur silicium</u><br>
<u>III-V tandem structures on silicon</u><br>
The use of tandem cells, by putting side by side several semiconductors absorbing a part of the solar spectrum, seems a promising way given the conversion efficiencies already obtained in this way. We investigate the fabrication of novel multijunction cells combining the advantages of silicon and III-V materials. We aim to develop InGaN alloy cells on silicon substrates in order to convert a large part of the solar spectrum and convert it into electric charges. The scientific objectives are the understanding of InGaN alloy growth phenomena on Si substrates using buffer layers. The technological objectives are the realisation of tandem cells in which the conversion efficiencies will exceed 30%, which is the theoretical limit for homojunction cells. The environmental objectives are the use of less raw materials (Si, In, Ga, ...) for better performances.<br>
L’utilisation de cellules Tandem, juxtaposant plusieurs semi-conducteurs chacun absorbant une partie du spectre solaire, semble une excellente option compte tenu des rendements de conversion déjà obtenus avec ce principe. Nous travaillons sur la formation de nouvelles cellules à multijonctions en combinant les avantages du silicium et ceux des matériaux III-V. Nous comptons développer des cellules à base d’alliage InGaN sur substrat silicium afin de transformer une bonne partie du spectre solaire et le convertir en charges électriques. Les objectifs scientifiques sont la compréhension des phénomènes de croissance d’alliage InGaN sur substrat Si en se servant de couches tampon. Les objectifs technologiques sont la réalisation de cellules tandem dont les rendements de conversion dépassent 30%, limite théorique pour des cellules à homojonction. Les objectifs environnementaux sont l’utilisation de moins de matière première (Si, In, Ga, …) pour des performances meilleures.<br>
''Projets: ANR-NOVAGAINS''<br>
''Projects: ANR-NOVAGAINS''<br>
''Collaborations académiques: LGEP-Gif, GergiaTech-Metz,INL-Lyon…''<br>
''Academic collaborations: LGEP-Gif, GergiaTech-Metz,INL-Lyon…''<br>
''Collaborations industriels : NOVATIONS''
''Collaborations with industry: NOVATIONS''

Dernière version du 6 mars 2020 à 16:11


  • Bulk Si solar cells
Solsim.jpg

The photovoltaic industry will continue using for a very long time crystalline silicon wafers but their growth method (metallurgic Si, ribbon Si) and their impurity content (O, C, Al, Fe, Ti, B, P…) necessitate a very strong decrease of their thickness (<100 µm) in order to minimise the impact of the minority carrier diffusion length. The gettering, surface passivation, texturing, and metallisation steps become very important. Besides, the development of N type Si for photovoltaics is becoming a good alternative. Our research efforts will be based on developing innovative processes for surface passivation (Al2O3 dielectrics, AlN ...), for texturing (reactive plasma), doping and local metallisation (implantation, laser, lamps). The electric properties of metallurgic Si wafers and Si ribbon will be correlated with the impurity contents in these wafers before and after treatment.
Ongoing projects: ANR-BIFASOL ; AMI-DEMOS, EUROGIA-LAPSIS
Academic collaborations: INES-Chambery, INL-Lyon, ILV-Versailles, IUMN-Lille …
Collaborations with industry: PHOTOWATT, SOLARFORCE, EXCICO, IREPA-Laser …

  • Thin film silicon cells

Thin film materials belong to the second generation of photovoltaic technologies. In particular, crystalline silicon provides several advantages: abundance (even in the gas phase), non-toxicity, easy recycling, chemical and thermal stability. However the disadvantages need to be tackled: indirect gap requiring high thicknesses, recombination defects, production costs. Our activities in this field are based on

o Investigation of new processes of elaboration of crystalline Si films on flexible substrates (metallic alloys ...), for instance the direct deposition of Si from a controlled plasma gas or the use of an ink containing silicon nanoparticles followed by sintering. The structural and electronic properties need to be correlated with the photovoltaic parameters of these structures.
o Development of methods for optical management in ultrathin Si in order to increase the path of photons and charge generation. Internal dielectric reflective films (ex. a-SiON:P, a-SiON:B), photonic crystals, metallic nanoparticle structures.

Projects: ANR-SILASOL ; FP7-POLYSIMODE
Academic collaborations: IMEC-B, HZB-DE, FhgISE-DE, INES-Chambery…
Collaborations with industry : PHOTOWATT, SUNTECH, IREPA-Laser, EXCICO …

  • New concepts for photovoltaics

Photon conversion by luminescence

Sputtering.jpg

Increasing the conversion efficiency requires the complete use of the solar spectrum by the conversion layer. One of the possible solutions is impurity cells or intermediate band cells, in which a modification of the active part of the cell is necessary. Another original idea consists in the modification of the incident spectrum by energy conversion of its photons, either by down-conversion (DC) or up-conversion (UC). In the first case thermalised photons are recovered and in the second case the non absorbed photons are recovered. Our investigations are:

o Development of conversion films based on silicon oxynitride containing silicon nanocristals doped with rare earth elements.
o Development of transparent conductive oxide films (TCOs) based on ZnO doped with one or several rare earth elements (Tb, Yb, Nd…) in order to allow the required conversion properties. Studying the charge transfers between ZnO films and silicon nanoparticles is also planned.

Academic collaborations: IPCMS-Strasbourg, IJL-Nancy, METU-Turquie…

Plasmonics structures
The use of plasmonics in photovoltaics is very recent and relies on the possibility that metallic nanoparticles dispersed on a surface or at the rear can enhance the electromagnetic field and thus increase the absorption in thin films, in particular for silicon. We use either a chemical method (deposition of Ag and annealing) or a physical method (ionic implantation of Ag or Al in a dielectric matrix). The bottlenecks are the control of size and density, the demonstration of efficient conversion and the integration of the process in the final cell (bulk Si or thin film).
Academic collaborations: IJL-Nancy, IPCMS-Strasbourg, UTT- Troyes

Silicon tandem structures
The bandgap of crystalline silicon can be tuned by nanostructuring. The objective is to obtain silicon tandem cells by putting side by side Si materials with different nanoparticle sizes or nanowires.
Our research is two-fold:

o Structure containing silicon nanoparticles dispersed in order in a dielectric matrix, which effective bandgap is controlled by the size of nano-objects. The scientific challenges are the control of doping in these nanostructures (either in-situ during the magnetron sputtering deposition or ex-situ by ionic implantation and thermal or laser annealing) and the measurement of the consequences on the optical and electronic properties. The major technological challenge is the fabrication of a cell on these structures.
o Silicon nanowire structures by CVD deposition of multilayers containing nanoparticles but in conditions enabling the percolation of these nanoparticles. Our future work will be base on the elaboration of Si nanowires by etching of dielectric matrixes, the doping of these nanowires, the determination of the optical properties of these vertical structures and eventually the realisation of cells.

Academic collaborations: IJL-Nancy, LMPO-Metz

III-V tandem structures on silicon
The use of tandem cells, by putting side by side several semiconductors absorbing a part of the solar spectrum, seems a promising way given the conversion efficiencies already obtained in this way. We investigate the fabrication of novel multijunction cells combining the advantages of silicon and III-V materials. We aim to develop InGaN alloy cells on silicon substrates in order to convert a large part of the solar spectrum and convert it into electric charges. The scientific objectives are the understanding of InGaN alloy growth phenomena on Si substrates using buffer layers. The technological objectives are the realisation of tandem cells in which the conversion efficiencies will exceed 30%, which is the theoretical limit for homojunction cells. The environmental objectives are the use of less raw materials (Si, In, Ga, ...) for better performances.
Projects: ANR-NOVAGAINS
Academic collaborations: LGEP-Gif, GergiaTech-Metz,INL-Lyon…
Collaborations with industry: NOVATIONS