logo université de Strasbourg logo CNRS logo INSA Strasbourg logo ENGEES

MATISEN team: Materials for information technology, sensing and energy conversion.

Materials and concepts for inorganic photovoltaics

De MATISEN team: Materials for information technology, sensing and energy conversion.
Aller à la navigation Aller à la recherche


  • Bulk Si solar cells

The photovoltaic industry will continue using for a very long time crystalline silicon wafers but their growth method (metallurgic Si, ribbon Si) and their impurity content (O, C, Al, Fe, Ti, B, P…) necessitate a very strong decrease of their thickness (<100 µm) in order to minimise the impact of the minority carrier diffusion length. The gettering, surface passivation, texturing, and metallisation steps become very important. Besides, the development of N type Si for photovoltaics is becoming a good alternative. Our research efforts will be based on developing innovative processes for surface passivation (Al2O3 dielectrics, AlN ...), for texturing (reactive plasma), doping and local metallisation (implantation, laser, lamps). The electric properties of metallurgic Si wafers and Si ribbon will be correlated with the impurity conents in these wafers before and after treatment.
Ongoing projects: ANR-BIFASOL ; AMI-DEMOS, EUROGIA-LAPSIS
Academic collaborations: INES-Chambery, INL-Lyon, ILV-Versailles, IUMN-Lille …
Collaborations with industry: PHOTOWATT, SOLARFORCE, EXCICO, IREPA-Laser …

  • Thin film silicon cells

Thin film materials belong to the second generation of photovoltaic technologies. In particular, crystalline silicon provides several advantages: abundance (even in the gas phase), non-toxicity, easy recycling, chemical and thermal stability. However the disadvantages need to be tackled: indirect gap requiring high thicknesses, recombination defects, production costs. Our activities in this field are based on

o Investigation of new processes of elaboration of crystalline Si films on flexible substrates (metallic alloys ...), for instance the direct deposition of Si from a controlled plasma gas or the use of an ink containing silicon nanoparticles followed by sintering. The structural and electronic properties need to be correlated with the photovoltaic parameters of these structures.
o Development of methods for optical management in ultrathin Si in order to increase the path of photons and charge generation. Internal dielectric reflective films (ex. a-SiON:P, a-SiON:B), photonic crystals, metallic nanoparticle structures.

Projects: ANR-SILASOL ; FP7-POLYSIMODE
Academic collaborations: IMEC-B, HZB-DE, FhgISE-DE, INES-Chambery…
Collaborations with industry : PHOTOWATT, SUNTECH, IREPA-Laser, EXCICO …

  • New concepts for photovoltaics

Photon conversion by luminescence
Increasing the conversion efficiency requires the complete use of the solar spectrum by the conversion layer. One of the possible solutions is impurity cells or intermediate band cells, in which a modification of the active part of the cell is necessary. Another original idea consists in the modification of the incident spectrum by energy conversion of its photons, either by down-conversion (DC) or up-conversion (UC). In the first case thermalised photons are recovered and in the second case the non absorbed photons are recovered. Our investigations are:

o Development of conversion films based on silicon oxynitride containing silicon nanocristals doped with rare earth elements.
o Development of transparent conductive oxide films (TCOs) based on ZnO doped with one or several rare earth elements (Tb, Yb, Nd…) in order to allow the required conversion properties. Studying the charge transfers between ZnO films and silicon nanoparticles is also planned.

Academic collaborations: IPCMS-Strasbourg, IJL-Nancy, METU-Turquie…

Plasmonics structures
The use of plasmonics in photovoltaics is very recent and relies on the possibility that metallic nanoparticles dispersed on a surface or at the rear can enhance the electromagnetic field and thus increase the absorption in thin films, in particular for silicon. We use either a chemical method (deposition of Ag and annealing) or a physical method (ionic implantation of Ag or Al in a dielectric matrix). The bottlenecks are the control of size and density, the demonstration of efficient conversion and the integration of the process in the final cell (bulk Si or thin film).
Academic collaborations: IJL-Nancy, IPCMS-Strasbourg, UTT- Troyes

Structures Tandem en silicium
La bande interdite du silicium cristallin peut être modulée par sa nanostructuration. Notre objectif est la réalisation de des cellules tandem à base de silicium en juxtaposant des matériaux Si avec différentes tailles de nanoparticules ou des nanofils.
Nos recherches s’orientent vers deux voies :

o Des structures contenant des nanoparticules de silicium dispersées d’une façon ordonnée dans une matrice diélectrique, et dont la bande interdite effective est contrôlée par la taille des nano-objets. Les défis scientifiques sont le contrôle du dopage de ces nanostructures (réalisé dans notre cas soit in-situ lors du dépôt par pulvérisation magnétron soit ex-situ par implantation ionique et recuit thermique ou laser) et la mesure de ses conséquences sur les aspects optiques et électroniques. Le défi technologique majeur est la fabrication d’une cellule sur ces structures.
o Des structures à nanofils de silicium obtenues par dépôt CVD de multicouches contenant des nanoparticules mais dans des conditions qui permettent la percolation de ces nanoparticules. Nos futurs travaux s’articuleront autour de l’élaboration de nanofils Si résultant du décapage de la matrice diélectriques, le dopage de ces nanofils, la détermination des propriétés optiques de ces structures verticales, et enfin la réalisation des cellules.

Collaborations académiques: IJL-Nancy, LMPO-Metz

Structures Tandem III-V sur silicium
L’utilisation de cellules Tandem, juxtaposant plusieurs semi-conducteurs chacun absorbant une partie du spectre solaire, semble une excellente option compte tenu des rendements de conversion déjà obtenus avec ce principe. Nous travaillons sur la formation de nouvelles cellules à multijonctions en combinant les avantages du silicium et ceux des matériaux III-V. Nous comptons développer des cellules à base d’alliage InGaN sur substrat silicium afin de transformer une bonne partie du spectre solaire et le convertir en charges électriques. Les objectifs scientifiques sont la compréhension des phénomènes de croissance d’alliage InGaN sur substrat Si en se servant de couches tampon. Les objectifs technologiques sont la réalisation de cellules tandem dont les rendements de conversion dépassent 30%, limite théorique pour des cellules à homojonction. Les objectifs environnementaux sont l’utilisation de moins de matière première (Si, In, Ga, …) pour des performances meilleures.
Projets: ANR-NOVAGAINS
Collaborations académiques: LGEP-Gif, GergiaTech-Metz,INL-Lyon…
Collaborations industriels : NOVATIONS